A few days ago, I was at a quite interesting workshop on "Anomalous quartic gauge couplings". Since the topic itself is quite interesting and has significant relevance to my own research on Higgs physics, I like to spend this entry on it. Let me start with describing what the workshop was about, and what is behind its rather obscure title.
At the experiments at the LHC what we do is smashing two protons into each other. Occasionally, either of two things may happen. The first possibility is that in the process each proton emits a W or Z boson, the carriers of the weak force. These two particles may collide themselves, but emerge without change. That is what we call an elastic scattering. Afterwards, these bosons are detected. Or rather, they are indirectly detected by their decay products. The second possibility is that either of the protons emits a very energetic W or Z, which then splits into three of these afterwards. These are then, again indirectly, observed. This is called an inelastic effect. Of course, much more usually goes on, but I will concentrate here on the most important part of the collision.
At first sight, both types of events may not have to do a lot with each other. But they have something important in common: In all cases four particles are involved. They may be any combination of Ws and Zs. To avoid further excessive use of 'W or Z', I will just call them all Ws. The details of which is which is not really important right now.
The fact that four are involved explains already the quartic in the name of the workshop. In the standard model of particle physics, that what happens can occur mainly in either of two ways. One is that two Ws form for some time another particle. This may either be another W or Z, or also a Higgs. Or they can all four interact with each other at the same time. That is then called a quartic gauge coupling, and thus the complete second half of the name of the workshop.
Now what is not right with this, as we talk about something anomalous? Actually, everything is all right with it in the standard model. But we are not only interested what there is in the standard model, but also whether there is something else. If there is something else, what we observe should not fit with what we calculate in the standard model alone. Such a difference would thus be anomalous. Hence, if we would measure that the quartic gauge coupling is different from the one we calculate in the standard model, we call it an anomalous quartic gauge coupling. And then we are happy, since we found something new. Hence, the workshop was about looking for such anomalous quartic gauge couplings. So far, we did not find anything, but we do not yet have seen many such situations. Far too few to make already any statements. But we will record many more in the future. Then we can make really a statement. At this workshop we were thus essentially preparing for the new data, which we expected to come in once the LHC is switched on again in early 2014.
What has this to do with my research? Well, I try to figure out whether two Higgs, or Ws, can form a bound state. If such bound states would exist, they would form exactly in such processes, for a very short time. Afterwards, they again decay into the final Ws. If they form, they would contribute to what we know. They are part of the standard model. So to see something new, we have to subtract their contributions, if they are there. Otherwise, they could be mistaken for a new, anomalous effect. Most important for me at the workshop was to understand, what is measured, and how they could contribute. It was also important to know what can be measured at all, since any experimental constraint I can get would help me in improving my calculations. This kind of connecting experiment and theory is very important for us, as we are yet far from the point where our results are perfect. The developments in this area remain therefore very important to my own research project.
Monday, October 14, 2013
Subscribe to:
Posts (Atom)