Monday, January 16, 2017

Writing a review

As I have mentioned recently on Twitter, I have been given the opportunity, and the mandate, to write a review on Higgs physics. Especially, I should describe how the connection is established from the formal basics to what we see in experiment. While I will be writing in the next time a lot about the insights I gain and the connection I make during writing, this time I want to talk about something different. About what this means, and what the purpose of reviews is.

So what is a review good for? Physics is not static. Physics is about our understanding of the world around us. It is about making things we experience calculable. This is done by phrasing so-called laws of nature as mathematical statements. Then making predictions (or explaining something what happens) is, essentially, just evaluating equations. At least in principle, because this may be technically extremely complicated and involved. There are cases in which our current abilities are not even yet able to do so. But this is technology and, often, resources in form of computing time. Not some conceptual problem.

But there is also a conceptual problem. Our mathematical statements encode what we know. One of their most powerful feature is that they tell us themselves that they are incomplete. That our mathematical formulation of nature only reaches this far. That are things, we do not even yet know what they are, which we cannot describe. Physics is at the edge of knowledge. But we are not lazy. Every day, thousands of physicists all around the world work together to push this edge daily a little bit farther out. Thus, day by day, we know more. And, in a global world, this knowledge is shared almost instantaneously.

A consequence of this progress is that the textbooks at the edge become outdated. Because we get a better understanding. Or we figure out that something is different than we thought. Or because we find a way to solve a problem which withstood solution for decades. However, what we find today or tomorrow is not yet confirmed. Every insight we gain needs to be checked. Has to be investigated from all sides. And has to be fitted into our existing knowledge. More often that not some of these insights turn out to be false hopes. That we thought we understood something. But there is still that one little hook, this one tiny loop, which in the end lets our insight crumble. This can take a day or a month or a year, or even decades. Thus, insights should not directly become part of textbooks, which we use to teach the next generation of students.

To deal with this, a hierarchy of establishing knowledge has formed.

In the beginning, there are ideas and first results. These we tell our colleagues at conferences. We document the ideas and first results in write-ups of our talks. We visit other scientists, and discuss our ideas. By this we find many loopholes and inadequacies already, and can drop things, which do not work.

Results which survive this stage then become research papers. If we write such a paper, it is usually about something, which we personally believe to be well funded. Which we have analyzed from various angles, and bounced off the wisdom and experience of our colleagues. We are pretty sure that it is solid. By making these papers accessible to the rest of the world, we put this conviction to the test of a whole community, rather than some scientists who see our talks or which we talk to in person.

Not all such results remain. In fact, many of these are later to be found to be only partly right, or still have overlooked a loophole, or are invalidated by other results. But this stage already a considerable amount of insights survive.

Over years, and sometimes decades, insights in papers on a topic accumulate. With every paper, which survives the scrutiny of the world, another piece in the puzzle fits. Thus, slowly a knowledge base emerges on a topic, carried by many papers. And then, at some point, the amount of knowledge has provided a reasonable good understanding of the topic. This understanding is still frayed at the edges towards the unknown. There is still here and there some holes to be filled. But overall, the topic is in fairly good condition. That is the point where a review is written on the topic. Which summarizes the finding of the various papers, often hundreds of them. And which draws the big picture, and fits all the pieces into it. Its duty is also to point out all remaining problems, and where the ends are still frayed. But at this point usually the things are well established. They often will not change substantially in the future. Of course, no rule without exception.

Over time, multiple reviews will evolve the big picture, close all holes, and connect the frayed edges to neighboring topics. By this, another patch in the tapestry of a field is formed. It becomes a stable part of the fabric of our understanding of physics. When this process is finished, it is time to write textbooks. To make even non-specialist students of physics aware of the topic, its big picture, and how it fits into our view of the world.

Those things, which are of particular relevance, since they form the fabric of our most basic understanding of the world, will eventually filter further down. At some point, the may become part of the textbooks at school, rather then university. And ultimately, they will become part of common knowledge.

This has happened many times in physics. Mechanics, classical electrodynamics, thermodynamics, quantum and nuclear physics, solid state physics, particle physics, and many other fields have undergone these level of hierarchies. Of course, often only with hindsight the transitions can be seen, which lead from the first inspiration to the final revelation of our understanding. But in this way our physics view of the world evolves.

No comments:

Post a Comment